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where s is an abscissa measured along the bedy and » is an
ordinate measured away from the body along the normal.
The singular line then is given by!~*

= [y — 1)/(y + DIA — u?) ey

where v and u are components of velocity in the s and » direc-
tion, respectively, referred to the limiting speed. The
choice of the s,n system renders Eq. (1) free from explicit de-
pendence on the shape of the body.

As the partial differential equations governing the flow are
integrated in the n direction across the shock layer, there re-
sults an approximating system of ordinary differential equa-
tions in a single variable s; this system then is integrated
numerically. The ordinary derivatives of the unknowns at
any value of s are expressed in terms of the data along the
ordinate s = const. The ordinate, therefore, plays the role of
a data line for the continuation of the solution in direction of
increasing s. ‘

The significance of relation (1) can be revealed as follows.
The local speed of sound, nondimensionalized with respect
to the limiting speed, is

a={l(y = 1/2](1 —w — )}
Equation (1) may be written as
{1+ v = D/21}e* = [(v — D/2]0 — w)
v = [(v — 1)/2]0 — u? — v?) = a?

Therefore, along the singular line the s component of velocity

attains sonic value. Taking square roots and dividing by the .

magnitude of velocity ¢, one obtains
v/q = +a/q = =1/M = sin(=+pu) (2)

where p is the Mach angle. Equation (2) implies that the
data line, s = const, becomes tangent to a characteristic at
every point of the singular line along which Eq. (1) holds.
In other words, the singular line is a locus of points at which
the direction of integration becomes normal to a characteristic.
Obviously, if the coordinate system is changed, so is the
direction of integration, and the singularity moves to a dif-
ferent .ocation. Incidentally, in spherical coordinates (,0),
Eq. (1) has the same form if w and v are taken to be velocity
components in r and 6 directions.

Using the present interpretation, it is now possible to ex-
plain the well-known fact that the point of intersection of the
singular line with the shock wave is nonsingular. This is so
because the angle between the shock and the velocity im-
mediately behind the shock is less than Mach angle. Conse-
quently, the shock layer downstream of the singular line lies
outside the range of influence of the point of intersection.
This is borne out by the fact that the equation for the deriva-
tive of the shock angle, as given by integral method, is non-
singular.4’

The implications of identifying the singular line of the
integral method with the locus of tangency of data lines with
characteristics are obvious in the light of the theory of charac-
teristics. However, it should be pointed out that the occur-
rence of a singular line of the type described here is not a
peculiarity of the method of integral relations. The method
introduces no artificiality in the form of a singular line; on
the contrary, it is rather remarkable to observe a complete
agerement between an approximate method such as Bielot-
serkovskii’s and the theory of characteristics.
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Simultaneous Gas-Phase and Surface
Atom Recombination for Stagnation
Boundary Layer
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Nomenclature
C = pu ratio defined by Eq. (3)
¢ = total atom mass fraction
Ccz = atom mass fraction of nitrogen atoms
D = binary diffusion coefficient
hy = frozen total enthalpy
ARY = heat of recombination
K, = equivalent surface reaction constant for gas-phase reac-
R tion
K, = parameter defined by Eq. (5)
Ky, = specific catalytic surface recombination constant
ke = constant portion of recombination coefficient, 1.56
X 10%
m = c/ce
P = pressure, atm
q = heat transfer to surface
R = universal gas constant, 82.06 cm3-atm/mole-°K
r = distance from the axis of symmetry to the surface
s = function defined by Eq. (3)
S¢ = Schmidt number, u/pD
T = absolute temperature, °K
u = streamwise velocity
x = streamwise distance
y = distance normal to surface
B = (due/dx), sec for Eq. (8)
T, = Damkhdler number for gas-phase recombination
Ty = Damkhdler number for surface recombination
. _ %0 for two-dimensional body
1 for axisymmetric body
n = function defined by Eq. (3)
7 = viscosity
v = kinematic viscosity, u/p
P = density
Subscripts
E = equilibrium
e = edge of boundary layer
f = frozen
0 = stagnation point
w = wall
© = freestream

Introduction

HE chemical state of nonequilibrium boundary layers
about hypersonic vehicles is of considerable interest. The
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interest stems mainly from the fact that the heat transfer to
the body and the observables in the wake and the trails are
affected greatly by the chemical state of the boundary layers.

The problem of nonequilibrium, chemically recombining
boundary layers is a formidable one, and exact solutions are
available only for a few special cases. The solutions that
exist have been obtained by assuming that either the gas-
phase or the surface recombination occurs alone.’—¢ At this
stage of development, an approximate solution will be useful if
it takes reasonable account of the simultaneous effects of gas-
phase and surface recombination.

It has been shown’ that the chemical state of the boundary
layer is controlled mainly by the recombination that takes
place near the wall when the wall is highly cooled. This
observation suggests representing the gas-phase reaction by
an equivalent surface reaction with all state variables specified
by surface conditions. The order of reaction and the cor-
responding rate constant of this equivalent surface reaction
will be determined for a noncatalytic wall. The equivalent
surface reaction concept then will be extended to the case in
which the surface has an arbitrary catalycity.

The basic concept of emphasizing the region of maximum
chemical activity in determining the chemical state of the
boundary layer first was used by Raes for the boundary layer
in which dissociative reactions predominate.

Analysis

Fay and Riddell' have obtained an exact solution of the
nonequilibrium stagnation point boundary layer with the
chemical state of the gas in the boundary layer ranging from
frozen to equilibrium. The computations were for a non-
catalytic wall at a temperature of 300°K and for a selected
flight condition. Chung and Anderson? have calculated by
an integral method the nonequilibrium effect on heat transfer
to blunt cones with noncatalytic walls at temperatures of
1000° and 1500°K for two flight conditions. Goodwin and
Chung? successfully have obtained additional solutions and
have correlated the results for various flight conditions and a
wall temperature of 1500°K by a single recombination rate
parameter.

Subsequently, Inger” has shown that the difference in wall
temperature between the two theoretical solutions®. % 9 may
be included in the correlation by noting the controlling in-
fluence of the wall temperature upon the chemical state of the
boundary layer. 1t appears that, with the resulting compre-
hensive correlation, the essential effects of nonequilibrium
reaction on chemical state and heat transfer have been taken
into account, at least to the correct order of magnitude.

The order and rate constant for the proposed equivalent
surface reaction will be determined first for noncatalytic walls.
Since the gas-phase reaction near the surface of a highly
cooled hypersonic vehicle is predominantly that of recom-
bination requiring three body collisions, a modified second-
order reaction appears to be a reasonable choice for the
equivalent surface reaction. Let

Pwa(bm/by)w = Kg[mw2/(1 + mw)] (D

where K, is the equivalent surface reaction constant for the
gas-phase reaction. The constant K, is to be determined
subsequently. In effect, the authors are assuming that the
nonequilibrium gas-phase reaction over a noncatalytic wall is
equivalent to a frozen boundary layer with the surface reac-
tion specified by Eq. (1).

An exact solution of the diffusion equation at the stagna-
tion point? gives the following equation for a frozen boundary
layer:

(Om/dn) = 0.47(1 — m,)Sc!l3 @
where
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s = f ? Pefhber2edx
C = (pu/pere)s = const (3)
Solution of Eqs. (1) and (2) for m,, gives}
me = [1/(1 + K,)] @
where
A 2/3
K Se K, (5)
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For the Lewis number not much different from one, it readily
can be shown that

(¢—q/lgz—q7) =1 —mu (6)
Equations (4) and (6) give at the stagnation point

(G—a)/(gs —g) = 1 — [1/A + K)P> (D)

Solutions of nonequilibrium boundary layers exist for axigym-
metric bodies only. The following correlations, therefore, will
be limited to the stagnation regions of axisymmetric bodies.
The correlation of Goodwin and Chung,? including the surface
temperature correlation of Inger,” gives (¢ — 9,)/(qz — g¢s) in
terms of a single parameter:
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It is desired to find KAg such that the heat transfer ratio (g
— q7)/(ge — ¢5) obtained by Eq. (7) will mateh the result
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Fig. 1 Variation of (q — ¢q;)/(qz — qs) with respect to
T'yand Ty

given by Goodwin and Chung in terms of T'y. It is found
that the heat transfer ratios match quite satisfactorily if

K, = 21T, (9)

Figure 1 shows the comparison between the heat transfer ratio
obtained from Ref. 9 and that from Eqs. (7) and (9). It is
seen that the present equivalent surface reaction theory
represented by Egs. (1, 7, and 9) predicts the heat transfer
ratio satisfactorily for nonecatalytic walls.

Consider now surfaces of arbitrary catalycity, represented
by a specific rate constant K., in the presence of nonequi-
librium gas phase reaction. The diffusion rate of atoms to the
surface then must be equal to the total rate of recombination
of atoms by both the gas-phase recombination and the cata-
lytic surface recombination. Equation (1) is generalized for
this case as

Pwa(am/by)w = Kg[mwz/(l 4+ mw)] + (puu)m, (10}
The solution of Eqs. (2, 10, and 6) for (¢ — ¢5)/(gz — q;) with

1 For the stagnation region, ., = gr and r = z.
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the aid of Eqs. (5) and (9) gives

9—q _,_ )+ 401+Te+21T)P? - T,
4 — qr 2(1 + Ty, + 21T)
(1)
where, for the stagnation region of axisymmetric bodies,
I, Pk o)Sc (12)

T (0.47) [2(poe)oBC M2

Equation (11) is a closed form solution that gives the heat
transfer ratio (¢ — ¢s)/(ge — ¢;) for arbitrary-rate simul-
taneous gas-phase and surface reactions.

The terms T, and I'w, defined by Egs. (8) and (12), are
essentially Damkhéler numbers representing the ratio of
characteristic diffusion time to characteristic chemical reac-
tion time for the gas-phase and surface reactions, respec-
tively.

Discussion

The accuracy of the solution, Eq. (11), cannot be checked
for the arbitrary combinations of T', and I',, because the gen-
eral exact solutions are not available. It can be established
that the equation gives correct results at the two limiting
cases of either 'y = 0 or Iy, = 0. It is sufficiently accurate
when T', = 0, because T', was obtained by matching the re-
sults with the solutions of Ref. 9. Tt is correct also when T,
= 0, because the solution (11) essentially becomes the solution
of Ref. 3. Though there is no direct check in the inter-
mediate region, it is felt that the physical reasoning leading to
the equivalent surface reaction concept of Eq. (10) is sound.
The excellent correlation shown for the gas-phase reaction
with noncatalytic surface appears to support the accuracy of
the results presented. '

The variation of (¢ — ¢s)/(gz — ¢,) with respect to I', and
T'., as given by Eq. (11), is seen in Fig. 1. The general be-
havior is similar to that for the Couette flow obtained in
Ref. 10.

It is noted here that the same problem considered here also
is being studied by Inger! from a different approach. In his
analysis the production term, or the source term, in the formal
diffusion equation is approximated by a simpler function re-
quiring only a correct matching near the surface. 1t is there-
fore based on a concept similar to that used herein in that the
chemical state near the surface is assumed to be of controlling
influence. It is still, however, an approximate analysis, and
the accuracies of any of these approximate analyses can be
checked only when exact solutions become available.

Conclusions

The concept of equivalent surface reaction has been de-
veloped for gas-phase recombination at the staghation region
of blunt bodies. This concept is based on the fact that the
chemical state of a nonequilibrium highly cooled boundary
layer is determined largely by the recombination that occurs
near the wall. An equation based on this concept was shown
to predict the heat transfer to a noncatalytic surface to within
a few percent of the more accurate existing results. The
equation was generalized to apply to the case in which surface
catalytic recombination oceurs simultaneously with gas-phase
reaction. The present solution, which is in a simple closed
form, should be useful in estimating heat transfer, although
the accuracy of the solution cannot be checked for the general
case, because of a lack of exact solutions. The atom con-
centration profile across the boundary layer can be obtained
from the value m,, obtained herein, since in a frozen boundary
layer the profile is determined when m,, is known (for instance,
see Ref. 3), and the present theory is, in essence, based on the
frozen boundary layer theory with modification only in the
boundary condition at the surface. The profile thus ob-
tained should approximate the true profile with the same de-
gree of accuracy as the heat transfer results. This profile, in
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turn, defines the chemical state across the boundary layer.
The equivalent surface reaction concept will be extended to
flow fields beyond the stagnation point of a blunt body.
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Subsonic Wing Span Efficiency

Ricuaro C. FrosT* AND ROBBIE RUTHERFORDT
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HE rather arbitrary manner in which subsonic wing span

efficiency often is selected has led to the development of
an empirical method by which a more realistic and consistent
value of efficiency can be determined. This method depends
on a parameter B that is defined as the ratio of the actual
chord force to the theoretical chord force with full leading-
edge suction; Risfound tobe a funetion of leading-edge-radius
Reynolds number. This note describes 1) the correla-
tion of R with Reynolds number, and 2) the method for ap-
plying the results.

Figure 1 shows the results of plotting R vs Reynolds number
with the characteristic length taken as the leading-edge radius
at the wing mean aerodynamic chord. All of the data are for
wings with symmetrical airfoils; R is determined as follows:

1) The drag at lift is given by

Crt/rRe = C, cosa + Cy sina (1)

With the usual assumption of small o and with Cy = Cp/cosw
Eq. (1) becomes

CL2/7I'1ZR€ = Cc + OLQ/OLa <2)
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